Silicon nanowires: where mechanics and optics meet at the nanoscale

نویسندگان

  • Daniel Ramos
  • Eduardo Gil-Santos
  • Oscar Malvar
  • Jose M. Llorens
  • Valerio Pini
  • Alvaro San Paulo
  • Montserrat Calleja
  • Javier Tamayo
چکیده

Mechanical transducers based on nanowires promise revolutionary advances in biological sensing and force microscopy/spectroscopy. A crucial step is the development of simple and non-invasive techniques able to detect displacements with subpicometer sensitivity per unit bandwidth. Here, we design suspended tapered silicon nanowires supporting a range of optical resonances that confine and efficiently scatter light in the visible range. Then, we develop an optical method for efficiently coupling the evanescent field to the regular interference pattern generated by an incoming laser beam and the reflected beam from the substrate underneath the nanowire. This optomechanical coupling is here applied to measure the displacement of 50 nm wide nanowires with sensitivity on the verge of 1 fm/Hz(1/2) at room temperature with a simple laser interferometry set-up. This method opens the door to the measurement of the Brownian motion of ultrashort nanowires for the detection of single biomolecular recognition events in liquids, and single molecule spectroscopy in vacuum.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Area Effect of Reflectance in Silicon ‎Nanowires Grown by Electroless Etching

This paper shows that the reflectance in silicon nanowires (SiNWs) can be optimized as a function of the area of silicon substrate where the nanostructure growth. SiNWs were fabricated over four different areas of silicon substrates to study the size effects using electroless etching technique. Three different etching solution concentrations of silver nitrate (AgNO3) and hydroflu...

متن کامل

Finite Element Modeling of the Vibrational Behavior of Single-Walled Silicon Carbide Nanotube/Polymer Nanocomposites

The multi-scale finite element method is used to study the vibrational characteristics of polymer matrix reinforced by single-walled silicon carbide nanotubes. For this purpose, the nanoscale finite element method is employed to simulate the nanotubes at the nanoscale. While, the polymer is considered as a continuum at the larger scale. The polymer nanotube interphase is simulated by spring ele...

متن کامل

Analysis of nanoscale mechanical grasping under ambient conditions

In this paper, in order to understand mechanical grasping at the nanoscale, contact mechanics between nanogrippers and nanoobjects is studied. Contact models are introduced to simulate elastic contacts between various profiles of a flat surface, sphere and cylinder for different types of nanoobjects and nanogrippers. Analyses and evaluation instances indicate that friction forces, commonly used...

متن کامل

Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method

Silicon nanowires will find applications in nanoscale electronics and optoelectronics both as active and passive components. Here, we demonstrate a low-temperature vapor–liquid–solid synthesis method that uses liquid-metal solvents with low solubility for silicon and other elemental semiconductor materials. This method eliminates the usual requirement of quantum-sized droplets in order to obtai...

متن کامل

Temperature measurement of Joule heated silicon micro/nanowires using selectively decorated quantum dots.

We developed a novel method to measure local temperature at micro/nano-scale regions using selective deposition of quantum dots (QDs) as a sensitive temperature probe and measured the temperature of Joule heated silicon microwires (SiMWs) and silicon nanowires (SiNWs) by this method. The QDs are selectively coated only on the surface of the SiMWs and SiNWs by a sequential process composed of se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2013